

Review of Night Vision Technologies for Detecting Marine Mammals from Vessels at Sea

Program ID 1757

M.A. Smultea¹, G.K. Silber¹, P. Donlan², S. Wilson³, L. Morse³, D. Fertl¹, D. Steckler², M. Adams¹, T. Petroske¹, ¹Smultea Environmental Sciences LLC, ²Mysticetus LLC, ³Ørsted Wind Power (U.S.), Inc.

Results – Best Performance

Different methods perform best at different distances. At \leq 100 m UE detection rates are similar day/night.

<u>During darkness</u>: NVD performs best <200 m, HH IR < 400 m, and mounted IR 200+ m. Baleen whales are detected farther than dolphins, dolphins farther than pinnipeds/sea turtles (the latter detected nearly exclusively ≤ 100 m).

Introduction

Numerous visual devices are available for nighttime detection but few have been empirically tested at sea with marine mammals and sea turtles. Detection of these animals is critical to their safety and welfare during shipping, vessel transit and exposure to underwater sounds.

Take Away

Within 500 m sighting distance, a combination of methods is most effective for visually monitoring

Method

We combined a literature review with field data to determine which devices are most effective at detecting species presence to at least 500 m from a vessel at sea during darkness. Consideration was given to device used, species, distance from observer, ambient conditions, relatiave cost, and at-sea effectiveness.

Fifteen *devices* were compared from literature reviews.

Four *methods* were compared using data (*n*=146 detections) collected in 2018-19 by certified Protected Species Observers (PSO) monitoring offshore US Atlantic wind development activities: unaided eye (UE), external deck-mounted Seiche infrared (IR) camera, Scout handheld

marine mammals from vessels during DARKNESS.

Effectiveness depends upon device, distance, species, and ambient

conditions.

		_		
Dolphins				
25	NVD	HH IR	Mounted IR	UE
is 15				
9 10 -				

A combination of methods/devices is recommended, depending on the distance, species, and conditions.

...By Distance

< 100 m	UE (in lights), NVD			
100-200 m	NVD, HH IR			
200-400 m	Mounted IR, HH IR			
400-500 m	Mounted IR			
By Condition				
Vessel Lights	UE, HH IR			
Bright Moonlight	UE, NVD, HH IR			
Very dark	Mounted IR, HH IR			
Fog (at	No IR devices work			
dewpoint)	well			
Low Beaufort	All			

Recommendation

Undertake a controlled test to

high-density animal areas.

Smultea Environmental Sciences

Email: www.smulteasciences.com

Whales

■ NVD ■ HH IR ■ Mounted IR ■ UE

Sighting

PSO L. Burhans detects dolphins at night with deck-mounted IR indoor display

PSO Danielle Nestler in low light conditions