Distribution and Abundance of Sea Lions in the Inland Waters of Washington, 2013-2016

Thomas A. Jefferson, Mari A. Smultea, and Eric J. Ward

Photo: M. A. Webber

Why Did We Do This?

- Two sea lion species in inland WA: Steller (*Eumetopias jubatus*) and California (*Zalophus californianus*) sea lions.
- Both are major fish predators, including threatened/endangered stocks (salmonids), and are prey for Bigg's killer whales.
- Sea lions in inland WA waters reduced by 20th century predator control programs.
- Stocks have rebounded since 1970s protection.
- No available empirical estimates of recent sea lion numbers for inland WA.

What Did We Do?

- Our approach here was to use line-transect sampling to estimate the abundance of both species of sea lions in inland WA.
- This is an unconventional approach, which is in some ways the reverse of what is usually done.
- The study used existing data from marine mammal aerial surveys conducted in 2013-2016, and tagging data from the two sea lion species that were collected for other studies.
- Therefore this is an example of an "existing databased research" study.

Who Was Involved?

- Puget Sound aerial surveys funded by the U.S.
 Navy
- Northern waters aerial surveys funded by National Marine Mammal Laboratory (NOAA Fisheries)
- We contacted many colleagues to find the best available tagging data to use in our modeling
- Sea lion tagging funded by **State of Washington**, **NOAA Fisheries**, and other in-kind contributions
- Sharon Melin and Peter Olesiuk kindly provided tagging data
 - This new analysis funded by **Puget Sound Partnership / Salish Sea Marine Survival Project**

Research Methods

Aerial surveys targeted all marine mammals, but with focus on harbor porpoises.

Surveys flown with systematic transects using a fixed wing aircraft.

39,399 km of aerial linetransect surveys throughout inland WA in 2013-2016.

Sighted a total of 255 groups of sea lions.

Tagging data were used to model the number of sea lions missed due to being "unavailable". Study area and transect lines

Results (abundance estimates)

		California Sea Lion				Steller Sea Lion			
Region	Season	Density	Abundance	95% CI	CV	Density	Abundance	95% Cl	CV
	Uncorrected in-water estimates								
Puget Sound/Hood Canal	Winter	0.021	54	35-83	21.41	0.000	0	n/a	n/a
	Spring	0.034	89	54-145	24.75	0.001	3	0-25	131.6
	Summer	0.002	7	2-27	79.42	0.000	0	n/a	n/a
	Autumn	0.008	21	9-51	46.74	0.018	47	27-82	28.3
Northern Inland Waters	Spring	0.107	500	51-4,918	82.87	0.000	0	n/a	n/a
Strait of Juan de Fuca	Autumn	0.000	0	n/a	n/a	0.052	48	42-54	6.3
	Corrected estimates (incl. in-water and on-land components)								
Puget Sound/Hood Canal	Winter	0.102	270	175-415	21.41	0.000	0	n/a	n/a
	Spring	0.168	442	271-723	24.75	0.003	8	1-58	132.8
	Summer	0.012	33	8-135	79.42	0.000	0	n/a	n/a
	Autumn	0.039	104	43-252	46.74	0.041	109	57-208	33.5
Northern Inland Waters	Spring	0.534	2,489	253-24,491	82.87	0.000	0	n/a	n/a
Strait of Juan de Fuca	Autumn	0.000	0	n/a	n/a	0.12	110	76-159	19.0

Conclusions/Caveats

- Our approach allows us to correct for unavailable animals without the need to conduct independent observer experiments.
- Our methods take a "reverse" approach from the traditional methods, which use aerial counts of sea lion haulouts, correcting for animals in the water.
- Traditional pinniped assessment methods target a single species. Our methods can be used for multi-species surveys.
- Due data limitations, we were not able to estimate abundance for all areas in all seasons, and had to make some assumptions about data representativeness.
 - Thus, these results should be considered a first step.

How Are the Findings Relevant?

- Our estimates provide the first empirical estimates of abundance for either species of sea lion in inland WA waters.
- This project shows that several thousand CA sea lions and at least several hundred Steller sea lions use inland WA waters during their respective peak seasons.
- Despite limitations, these estimates provide important information for managers concerned about impacts of sea lion predation on fish stocks.
- They can be used in models that examine the impacts of sea lion predation on fish stocks.
- Results also useful in evaluating potential reasons for recent Bigg's killer whale population increases.

Status / Next Steps

- Completion of final report to PSP fall 2022
- Submission of paper to Aquatic Mammals December 2022
- Submission of data to PSP April 2023
- Current status:
 - Paper published in *Aquatic Mammals* on 15 July 2023
 - Prepping data submittal to OBIS-SEAMAP online database
- Follow-up study, with new data collection??

• THANK YOU FOR LISTENING!